Veke 9. Grensekostnad
Den deriverte som ein funksjon
10.2 Den deriverte som ein funksjon
I forrige avsnitt vart me kjende med den deriverte, stigningstalet på ei kurve som ikkje treng vera rak, i eit bestemt punkt. På ei krum kurve varierer stigningstal langs kurva. Når er ein funksjon, skriv me gjerne for stigningstalet. Sidan stigningstalet varierer med , er òg ein funksjon.
Merknad 10.10 Den deriverte kan me tenkja på som stigningstalet åt , eller, for å vera pirkut, som stigningstalet åt ein tangent til kurva åt i punktet .
Dersom er ein kostnadsfunksjon, kallar me for grensekostnaden.
Eksempeloppgåve 10.7 Lat oss sjå vidare på grensekostnaden for bedrifta i forrige avsnitt. Kostnadsfunksjonen var
Me skriv for stigningstalet (grensekostnaden) åt .
Bruk plottet som du har av , og estimer stigningstalet på augemål, for .
Løysing 10.4
Tangenten for (raud til venstre) ser ut til å stiga ei halv rute, eller 1,25, går frå 0 til 1. Det gjev eit stiningstal på litt meir enn 1.
Tangenten for (grøn) stig cirka ei rute (2,5) når går frå 2 til 3. Det gjev eit stigningstal på .
Tangenten for (cyan) stig nesten to ruter (5) når går frå 3 til 4. Det gjev eit stigningstal på mellom 4 og 5.
Tangenten for (raud til høgre) ser ut til å stiga knapt tre ruter, eller 7,5, går frå 3,5 til 4,5. Det gjev eit stiningstal på vel 7.
Øvingsoppgåve 10.8 Sjå på plottet som du har av kostnadsfunksjonen
frå forrige avsnitt. Estimer stigningstalet på augemål, for .
Lat vera ein kvadratisk funksjon. Då er den deriverte gjeven som
Finn eit uttrykk for grensekostnaden ved hjelp av formelen i rekneregel 15.2. Rekn ut for og samanlink med estimata dine frå oppgåve 10.7.
Løysing 10.5 Formelen gjev
Når me set inn, får me
Estimata våre i oppgåve 10.7 ligg stort sett nær dei sanne verdiane som me no har rekna ut. Den største bommen hadde me for , men me ser òg at kurva var ujamnt teikna rundt dette punktet, so det er ikkje rart at tangenten òg vart litt feil.
Finn eit uttrykk for grensekostnaden ved hjelp av formelen i rekneregel 15.2. Rekn ut for og samanlink med estimata dine frå oppgåve 10.8.
Eksempeloppgåve 10.11 Tenk deg at bedrifta, som har kostnadsfuknsjonen
produserte einingar i fjor. Kva må prisen vera for at det skal løna seg å auka produksjonen i år? (Bruk svara dine frå oppgåve 10.9 som mellomrekning.)
Løysing 10.6 Grensekostnaden gjev kostnadsauka for ei lita (marginal) auke i produksjonen. For å tena pengar, må prisen dekkja denne kostnaden. Me fann , og me treng difor ein pris større enn sju.
Øvingsoppgåve 10.12 Tenk deg at bedrifta, som har kostnadsfuknsjonen
produserte einingar i fjor. Kva må prisen vera for at det skal løna seg å auka produksjonen i år? (Bruk svara dine frå oppgåve 10.10 som mellomrekning.)