Image Forensics and Steganalysis

(Hans) Georg Schaathun

Department of Computing
University of Surrey

26 June 2009
1 Examples
 - Tampering
 - Different Security Scenarios

2 Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3 Our group

4 Conclusion
Outline

1. Examples
 - Tampering
 - Different Security Scenarios

2. Steganography and Steganalysis

3. Our group

4. Conclusion
Outline

1. Examples
 - Tampering
 - Different Security Scenarioes

2. Steganography and Steganalysis

3. Our group

4. Conclusion
How worrying is the Iranian weaponry?

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication
How worrying is the Iranian weaponry?

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication
How worrying is the Iranian weaponry?

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication
How worrying is the Iranian weaponry?

- Picture from AFP.
- One of the rockets really fired
- Some rockets are the product of PhotoShop...
- The image was retracted after publication
Crime Scene Photography

What did the crime scene look like?

- Photography is vital evidence
- Photography can be altered...
 - What can we prove?
Crime Scene Photography

- What did the crime scene look like?
 - Photography is vital evidence
- Photography can be altered...
 - What can we prove?
Who were actually there?

- Former Culture Secretary James Purnell
- Late for the meeting.
 - Arrived after three other MPs had to leave.
- James Purnell was added to the picture
- (BBC News - 28 September 2007)
Outline

1. Examples
 - Tampering
 - Different Security Scenarios

2. Steganography and Steganalysis

3. Our group

4. Conclusion
Is the photo real?

Does it show reality?
Or has its author exercises artistic licence?
 - tampering with evidence
 - adding grandeur to a story
 - computer generated images

For example
 - Merging images
 - Erasing details or objects
Where does the photo come from?

- Objective: add credibility to claims
- All information about the image is potentially useful...
 - Which camera took the image?
 - Time of day, time of year, etc.
 - Subsequent image processing
 - contrast, compression, brightness, etc.
Where does the photo come from?

- Objective: add credibility to claims
- All information about the image is potentially useful...
- Which camera took the image?
- Time of day, time of year, etc.
- Subsequent image processing
 - contrast, compression, brightness, etc.
Is there more than meets the eye?

- Additional information hidden in the image?
 - known as *steganography*
Three important questions

1. Is the photo real?
2. Where does the photo come from?
3. Is there more than meets the eye?
User scenarios

- News agency, news paper, etc.
 - can we trust images from the public?
 - they can get thousands of images in a day

- Forensics and Court of Law
 - what can we prove?
 - what is the truth?
 - is the image real or synthetic?

- Intelligence services
 - is there secret communications hidden in the image?
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
The basic problem

Simmons Crypto’83
The basic problem
Simmons Crypto’83
The basic problem
Simmons Crypto’83
The basic problem
Simmons Crypto’83
The basic problem
Simmons Crypto’83

I wonder what they are up to, Alice and Bob…

William the Warden

Alice

Bob
The basic problem
Simmons Crypto’83

About Uncle Charlie who is ill.

Family matters. None of my business.

Alice

William the Warden

Bob
The basic problem

Simmons Crypto’83

Alice

Discussing escape plans.

Bob

William the Warden

Oh dear. That’s maximum security for Bob.
The basic problem

Simmons Crypto’83

Qvphffvat rpncr cynaf.

Encrypted?! They sure are up to no good.
The vision
Simmons Crypto’83

Escape at midnight.

«Uncle Charlie is much better now.»

Alice

Bob

William the Warden
The basic crypto-problem

Encryption

Alice

Bob the Banker
Steganography and Steganalysis

The basic crypto-problem

Encryption

Alice

Bob the Banker

Eve
The basic crypto-problem

Encryption

Alice

Eve

Bob the Banker

Steganography and Steganalysis

Steganography
The basic crypto-problem

Encryption
The basic crypto-problem

Encryption

Transaction data.

What is the password?

Alice

Bob the Banker

Eve
The basic crypto-problem

Encryption

Alice → Genafnpgvba qngn. → Bob the Banker

Sigh! Encrypted.

Eve
The data hiding system

The pure stego-system
The data hiding system

The pure stego-system

- Security depends on the confidentiality of the algorithm.
The data hiding system

Secret-key stego-system

The key k is shared confidentially by Alice and Bob.
- Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text.
The data hiding system
Secret-key stego-system

- The key k is shared confidentially by Alice and Bob.
 - Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text
The data hiding system

Secret-key stego-system

- The key k is shared confidentially by Alice and Bob.
 - Gives Bob an edge over Eve.
- Without the key, the stego-text is indistinguishable from any other cover text
The data hiding system
Secret-key stego-system

- The cover text is a red herring
- It has no value at the receiver
The data hiding system

Significance of the Cover Image

- The cover text is a red herring
- It has no value at the receiver
The data hiding system

Watermarking System

- Related to watermarking – where the cover image is essential.
- Watermarking ties the message to the cover.
 - The attacker tries to separate the two.
The data hiding system

Watermarking System

- **Message**
- **Key**
- **Recovered**

- **Cover**
- **Embedding**
- **Extractor**
- **File**
The data hiding system

Watermarking System
Definitions

The tools

Definition (Stego-system)
A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)
The study of (and art of developing) stego-systems.

Definition (Steganalysis)
The art of detecting whether secret communications is taking place or not.
Definitions

The tools

Definition (Stego-system)
A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)
The study of (and art of developing) stego-systems.

Definition (Steganalysis)
The art of detecting whether secret communications is taking place or not.
Definitions

The tools

Definition (Stego-system)
A system which allows Alice and Bob to communicate secretly without Eve knowing that any secret communication is taking place.

Definition (Steganography)
The study of (and art of developing) stego-systems.

Definition (Steganalysis)
The art of detecting whether secret communications is taking place or not.
Steganalysis

Using Machine Learning

- Most recent steganalysis systems use Machine Learning or related statistical techniques
- Most often a two-class SVM is used (natural vs. steganogram)

1. Extract features (statistics) from the image
 - Multi-dimensional floating point vector

2. Train the system
 - Input two ensembles of feature vectors
 - The system will estimate a model

3. Testing
 - Input the estimated model + Images from each class
 - Output classification decisions – Estimate accuracy

4. Real use
 - Input: model; feature vector from a suspicious image
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
JPEG images

PixMap \rightarrow \text{subblocked} \rightarrow \text{Blockwise DCT} \rightarrow \text{Quantisation} \rightarrow \text{JPEG array}
JPEG images

- **Pixmap**
- **JPEG Compression**
- **JPEG array**
- **Subblocked**
- **Blockwise DCT**
- **Quantisation**
JPEG images

- **pixmap**
- **JPEG Compression**
- **JPEG array**
- **JPEG file**
- **Serialisation**
- **Source Coding**
Many stego-algorithms work on the JPEG Array
- Integer matrix

E.g. Jsteg
- Ignore $+1$ and 0 coefficients
- Embed in the least significant bit of each coefficient
- Extract by taking $c \mod 2$
The F5 Algorithm
by Andrea Westfeld

- Better preservation of image statistics
- JPEG coefficient magnitudes are always decreased
- Matrix coding (source coding) is used
 - coding to match the cover
 - minimise the number of modifications
Typical JPEG Steganography

- Modulate information on the cover
 - ± 1 changes to coefficients
- Independent modifications
 - Independence of the cover
 - Independence of individual coefficients
- This is the problem of steganography
 - Image coefficients are \textit{not} independent
 - The modifications become detectible noise
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
Consider the absolute value of the JPEG array

- Difference matrix – differences between adjacent coefficients
- Model the difference matrix
 - First-order Markov model
- Estimate a Transition Probability Matrix
 - which forms our features
The difference array

\[F_v(i, j) = |J_{i,j}| - |F_{i+1,j}| \]

To reduce complexity, the difference array is capped at \(\pm T \)

- Large (small) values are reduced (increased) to the capping value.
The other three difference arrays

- Horizontal, and major and minor diagonal
Transition Probability Matrix

For $s, t \in \{-T, -T+1, \ldots, T-1, T\}$, we estimate

- $M_{s,t}^v = P(F_v(i+1,j) = s|F_v(i,j))$
- $M_{s,t}^h = P(F_h(i,j+1) = s|F_h(i,j))$
- $M_{s,t}^d = P(F_d(i+1,j+1) = s|F_d(i,j))$
- $M_{s,t}^m = P(F_m(i,j+1) = s|F_m(i+1,j))$

This gives four matrices

- $M^x = [M_{s,t}^x]$

$4(2T+1)^2$ features

- Shi et al suggested $T = 4$ for 323 features

Performance around 90%–98% accuracy
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
The F5 implementation

- JPEG based stego-algorithms should work on the JPEG array

 - This is what F5 (and Jsteg) Software actually do:

1. Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded

2. Compression and Embedding as an integrated process
 - Compression implemented by tweaking existing compression routines
 - Usually using default parameters

3. Save the compressed image
The F5 implementation

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:

1. Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded

2. Compression and Embedding as an integrated process
 - Compression implemented by tweaking existing compression routines
 - Usually using default parameters

3. Save the compressed image
The F5 implementation

1. JPEG based stego-algorithms should work on the JPEG array
 This is what F5 (and Jsteg) Software actually do:

2. Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded

3. Compression and Embedding as an integrated process
 - Compression implemented by tweaking existing compression routines
 - Usually using default parameters

4. Save the compressed image
The F5 implementation

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:

1. Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded

2. Compression and Embedding as an integrated process
 - Compression implemented by tweaking existing compression routines
 - Usually using default parameters

3. Save the compressed image
The F5 implementation

- JPEG based stego-algorithms should work on the JPEG array
- This is what F5 (and Jsteg) Software actually do:

1. Load and Decompress the Image
 - Internal Spatial Representation
 - Compression Parameters are discarded

2. Compression and Embedding as an integrated process
 - Compression implemented by tweaking existing compression routines
 - Usually using default parameters

3. Save the compressed image
Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as *Double Compression*

- This normally causes artifacts
- Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?
Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as *Double Compression*

- This normally causes artifacts

 - Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?
Double Compression

- The F5 software recompresses the image
 - Usually using a different compression factor
 - Known as *Double Compression*
- This normally causes artifacts
- Typical Steganalysis classifiers
 - Compare Clean images against F5 processed images
 - What is detected?
 - Double Compression or Steganography?
Alternative Experiment

- New training set
 1. Steganograms from F5 (with a hidden message)
 2. Cover images processed by F5 without a message
- Thus both of classes are doubly compressed
- Our classifier will have to work on the embedding only
1st vs. 2nd Order Markov Models

Performance

- **Ignoring Double Compression**

<table>
<thead>
<tr>
<th>Message length (bytes)</th>
<th>618</th>
<th>1848</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td>89.5%</td>
<td>93.5%</td>
<td>98.0%</td>
</tr>
<tr>
<td>2nd Order</td>
<td>99.1%</td>
<td>99.1%</td>
<td>98.6%</td>
</tr>
</tbody>
</table>

- **F5 vs. doubly compressed (clean) images**

<table>
<thead>
<tr>
<th>Message length (bytes)</th>
<th>618</th>
<th>1848</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td>50.2%</td>
<td>84.3%</td>
<td>97.9%</td>
</tr>
<tr>
<td>2nd Order</td>
<td>50.0%</td>
<td>55.6%</td>
<td>70.6%</td>
</tr>
</tbody>
</table>
1st vs. 2nd Order Markov Models

Performance

Ignoring Double Compression

<table>
<thead>
<tr>
<th>Message length (bytes)</th>
<th>618</th>
<th>1848</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td>89.5%</td>
<td>93.5%</td>
<td>98.0%</td>
</tr>
<tr>
<td>2nd Order</td>
<td>99.1%</td>
<td>99.1%</td>
<td>98.6%</td>
</tr>
</tbody>
</table>

F5 vs. doubly compressed (clean) images

<table>
<thead>
<tr>
<th>Message length (bytes)</th>
<th>618</th>
<th>1848</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Order</td>
<td>50.2%</td>
<td>84.3%</td>
<td>97.9%</td>
</tr>
<tr>
<td>2nd Order</td>
<td>50.0%</td>
<td>55.6%</td>
<td>70.6%</td>
</tr>
</tbody>
</table>
Outline

1. Examples

2. Steganography and Steganalysis
 - Steganography
 - JPEG and F5
 - The Markov Based Model
 - Double Compression
 - Conditional Probability Features

3. Our group

4. Conclusion
Complexity

- Shi et al.'s technique uses 323 features
- Computationally costly, to extract and to train
- We have proposed a simpler set
 - achieving similar performance
Basic ideas

1. The Markov Model is flawed
 - probability distribution of each coefficient is
 - determined by preceding coefficients
 - independent of position
 - it should depend on the frequency (position in a subblock)

2. The transition probability matrix is too fine-grained
 - too many features to compute
The coefficients considered

<table>
<thead>
<tr>
<th></th>
<th>x_h</th>
<th>y_h</th>
<th>z_h</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_v</td>
<td>x_d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>y_v</td>
<td></td>
<td>y_d</td>
<td></td>
</tr>
<tr>
<td>z_v</td>
<td></td>
<td></td>
<td>z_d</td>
</tr>
</tbody>
</table>
The CP Features
Definitions

- Triplet \((x, y, z)\) as in figure
- Three posterior events
 - \(A_1 : y > z; A_2 : y = z; A_3 : y < z\)
- Three prior events
 - \(B_1 : x > y; B_2 : x = y; B_3 : x < y\)
- Nine features per triplet \((x, y, z)\)
 - \(P(A_i|B_j)\) for \(i, j = 1, 2, 3\)
- 27 features in total
 - A 54-feature variant (six triplets) was less effective
Performance

CP Features

- Computation – Markov Model based technique in parenthesis
 - Training 770ms (150ms) on 2480 images
 - Classification 0.2ms (same) per image
 - Feature Extraction 114ms (13s) per image

- Accuracy (large message, 4kB)
 - 97.2% for both CP and Markov Model
 - 95% confidence interval is (95.3%, 99.2%)
Performance

CP Features

- Computation – Markov Model based technique in parenthesis
 - Training 770ms (150ms) on 2480 images
 - Classification 0.2ms (same) per image
 - Feature Extraction 114ms (13s) per image

- Accuracy (large message, 4kB)
 - 97.2% for both CP and Markov Model
 - 95% confidence interval is (95.3%, 99.2%)
Outline

1 Examples

2 Steganography and Steganalysis

3 Our group

4 Conclusion
Steganalysis and Image Forensics
and Machine Learning

- Steganalysis
 - Development of Scientific Methodology
 - New feature sets
- sister team on Image Forensics
- sister group in Biologically Inspired Methods
Coding Theory
Applications in Data Hiding

- Deletion/Insertion Correction
 - for use in Watermarking
 - Geometric Distortions
- Wet Paper and Dirty Paper Coding
 - Distortion Minimisation in Watermarking and Steganography
- Construction/Non-Existence of Codes
Information Security

- Security in Contact-Less Payment Systems
 - are they sufficiently secure
- sister group in E-voting
Outline

1. Examples
2. Steganography and Steganalysis
3. Our group
4. Conclusion
Next project

- Information Forensics is a booming area
 - Image Forensics in particular
 - The methods and methodology are largely shared with Steganalysis
- Is there room for collaboration?
 - Machine Learning
 - Sound methodology