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Abstract Several open questions in coding theory relate to non-existence
or construction of certain optimal codes. Many previous problems of this
kind have been solved by studying possible weight enumerators. A couple
of authors in this decade have proposed using higher weights (generalised
Hamming weights) to a similar effect. In this paper we suggest one ap-
proach based on the weight hierarchy, and it allows us to conduct an
extremely rapid computer search to prove that there are exactly two in-
equivalent [36, 8, 16] codes. The technique can also be used to gain new
information about the weight hierarchy of the putative [72, 36, 16] code,
but not yet enough to say if it exists or not.

1 Introduction

Higher Weights, that is, parameters describing the support weight of subcodes
of dimension higher than one, was a very hot topic during the 1990-s. Helleseth,
Kløve, and Mykkeltveit [6] had already in 1977 introduced the support weight
distributions. From the support weight distribution for a single binary code, they
could determine the weight distribution for an infinite class of non-binary codes.

Victor Wei [13] introduced the weight hierarchy, that is, the sequence of
minimal support weights of any r-dimensional subcode, which he used to analyse
information-theoretic security on the Wire-Tap Channel of Type II [10].

Later it has been suggested to use higher weights to limit searches for putative
optimal codes. Dougherty, Gulliver, and Oura [4] showed that the second support
weight distribution of the putative [72, 36, 16] code could be calculated by using
the MacWilliams-Kløve-Simonis identities [7,12]. Another work [11] found a way
to calculate some of the high-order support weight distributions for this code.

More recently Luo, Mitrpant, Han Vinck, and Chen [8] introduced the con-
cept of relative generalised Hamming weights. Their application was analysis of a
two-party Wire-Tap Channel of Type II, and the work has drawn little attention
in the subsequent literature. Could it help us solve some of the long-standing
problems in coding theory?

In the present paper, we discuss the idea of using the weight hieararchy to
constrain code searches. We show that the weight hierarchy of any [36, 8, 16]
code can be uniquely determined, and that this gives us enough information to
run an exhaustive search in less than 2 minutes.



2 Preliminaries

For any vector c = (c1, . . . , cn) ∈ Fn (where F is a field), the support of c is
defined as

χ(c) = {i : ci 6= 0}.

The (support) weight of c is w(c) = #χ(c). For a set D ⊂ Fn, the support is
defined as

χ(D) = ∪c∈Dχ(c),

and the (support) weight, as before, is w(D) = #χ(D).
Let C be an [n, k] code over F . The weight hierarchy (d1, d2, . . . , dk) is defined

by
di = min

D≤C,dim D=i
w(D),

i.e. di is the minimal weight of an i-dimensional subcode. Clearly, d1 = d is the
regular minimal distance, and d0 = 0 for completeness.

The support weight distribution is the set of parametersA(r)
i for r = 0, 1, . . . , k

and i = 0, 1, . . . , n, where A(r)
i is the number of r-dimensional subcodes D ≤ C

of weight w(D) = i. Like the traditional weigh enumerator, we can form support
weight enumerators

Wr(Z) =
n∑

i=0

A
(r)
i Zi.

Obviosuly the weight enumerator W (Z) is W (Z) = W1(Z) + 1.
Two binary codes are said to be equivalent if one can be obtained from the

other by a combination of permutations of the columns (coordinate positions).

3 The [36, 8, 16] code

The first binary [36, 8, 16] code was discovered by Helleseth and Ytrehus [2], using
a computer search detailed in [15]. It had been a long-standing open question
whether the optimal minimal distance for a [36, 8] code would be 15 or 16. An
exhaustive search was not feasible, and until now, it has not been known whether
the code they found is unique. Our technique gives us the following proposition
in few minutes on any personal computer.

Proposition 1. There are exactly two distinct [36, 8, 16] codes up to equivalence.

3.1 The Weight Hiearchy

Lemma 1 (Ytrehus). Every binary [36, 8, 16] code has weight enumerator

A(Z) = 1 + 153Z16 + 72Z20 + 30Z24.
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Table 1. The second through the fourth support weight distribution of a [36, 8, 16]
binary code.



5 6 7 8
32 225 — — —
33 6240 — — —
34 19620 630 — —
35 37152 3312 36 —
36 33918 6853 219 1

Table 2. The fifth through the eighth support weight distribution for a [36, 8, 16]
binary code are uniquely determined by the MacWilliams-Kløve identities.

The weight enumerator was found in [15], showing clearly that the code is
doubly-even and consequently self-orthogonal.

Using the MacWilliams-Kløve-Simonis identities [7,12], and using the gen-
eralised Griesmer bound to fix some zero coefficients for small weights, we can
get most of the coefficients in the support weight distribution as well, as seen in
Tables 1 and 2.

Lemma 2. Every binary [36, 8, 16] code has weight hierarchy

(16, 24, 28, 30, 32, 34, 35, 36).

Proof. Note in particular that A(2)
24 and A(4)

30 are positive, so d2 = 24 and d4 = 30.
It follows from the generalised Griesmer bound that d3 = 28.

The values for d5, d6, d7, and d8 may be read directly from Table 2.

The chain condition, introduced by Wei and Yang [14], states that there
exists a sequence of subcodes

{0} < D1 < D2 < . . . < Dk−1 < C

such that w(Dr) = dr for each r, where < denotes a proper subgroup (subspace).
Note that it follows that dimDr = r.

Lemma 3. Every binary [36, 8, 16] code satisfies the chain condition.

Proof. Consider a subcode D4
30 of dimension 4 and weight 30. Any [30, 4, 16]

code is equivalent to the two-fold replication of the [15, 4, 8] simplex code. All
the codewords in such a subcode has weight zero or 16, and in particular, every
three-dimensional subcode D3 < D4

30 contains seven words of weight 16, and
thus w(D3) = 28. Hence there are 15A4

30 ≥ 4800 pairs (D3
28 < D4

30).
Solving the system of inequalities A(r)

i ≥ 0 for r = 2, 3 and all i, we get that
A3

28 ≤ 3732, and consequently there must be two four-dimensional subcodes E1

and E2 of weight 30 that intersect in a three-dimensional subcode D3
28 of weight

28. The span D5
32 = 〈E1, E2〉 must be a five-dimensional subcode of weight 32.

Hence we have a chain of subcodes

{0} < D1
16 < D2

24 < D3
28 < D4

30 < D5
32 < D8

36 = C.



By puncturing C on an arbitrary coordinate not in χ(D5
32) we obtain a seven-

dimensional subcodeD7
35 of weight 35, and by puncturing on a second coordinate,

also a six-dimensional subcode D6
34 of weight 34, completing the chain

{0} < D1
16 < D2

24 < D3
28 < D4

30 < D5
32 < D6

34 < D7
35 < D8

36 = C. (1)

Ergo, any [36, 8, 16] binary code satisfies the chain condition.

GY =

266666666664

111111111111111100000000000000000000
111111110000000011111111000000000000
111100001111000011110000111100000000
110011001100110011001100110011000000
101110111011101110111011101110110000
000000000001110100011101110011111100
000100010000001101110111100110010110
000000000110100101011010111111000011

377777777775

Gnew =

266666666664

111111111111111100000000000000000000
111111110000000011111111000000000000
111100001111000011110000111100000000
110011001100110011001100110011000000
101110111011101110111011101110110000
000000000001110100011101110011111100
000100010000010111101011010101010110
000000000100011101110100001100111111

377777777775
Table 3. Two inequivalent [36, 8, 16] codes, where GY is equivalent to Ytrehus’ code,
and Gnew is new.

3.2 The code search

The [30, 4, 16] subcode is clearly unique, where all non-zero codewords have
weight 16. It may be possible to construct the possible [32, 5, 16] codes analyti-
cally as well, but there is little point as a computer search can be made in less
than a minute.

Suppose we have constructed a [N,K]subcode D, and need a [N + t,K + 1]
subcode. We construct candidates for Row K + 1, as the set

S := {x ∈ D⊥ : ∀c ∈ c, w := w(x + c) + t, d ≤ w ≤ m ∧ w mod 4 ∼= 0},

where d andm are the minimal and maximal weights (16 and 24 for the [36, 8, 16]
code). Obviously, the conditions can be modified to allow for singly-even codes,
or even codes which are not self-orthogonal.

All possible codes are constructed by appending t zero columns, and all
possible rows x||(1 . . . 1) for x ∈ S to the generator matrix of D.



In order to rule out equivalent codes, we use the nauty library of Brendan
McKay [9]. Nauty works on coloured graphs, so we use a standard technique
to represent codes as graphs. We need a set S of codewords which is invariant
under all automorphisms, and which spans the code. Usually, the set of minimal
weight codewords will do, but if this does not span the code, we add codewords
of the next higher weight, until we span the code.

Each codeword in S corresponds to a black vertex in the graph. There is a
white vertex for each coordinate position, and there is an edge between a black
vertex B and a white vertex W , if the codeword corresponding to B is one in
the position corresponding to W .

The graphs are represented by incidence matrices, and every graph corre-
sponding to a linear code C has an incidence matrix of the form

I =
[

0 MT

M 0

]
,

where the rows of M are the necessary low weight codewords of C.
From an incidence matrix I, nauty can produce a canonical incidence matrix

which is common for all isomorphic graphs (equivalent codes). We can form a
canonical generator matrix for the corresponding code by Gaussian elimination
on the matrixM . Since this algorithm is deterministic, the same canonical graph
will always give the same canonical generator matrix.

When we want to reject equivalent codes, we keep a hash table using the
canonical generator matrix as a key. For each code we generate, we try to insert
it in the hash table. If it is already there, we have already searched this code and
proceed immediately to the next one. If it is successfully inserted, we continue
by searching this code.

Using this search algorithm, we find two inequivalent [32, 5, 16] codes, in half
a minute on a mid-range laptop. Growing the code from [32, 5] to [36, 8] it is
advantageous to use the same candidate set S for all the three rows required.
Because we know that the d7 = 35, we know that the [36, 8, 16] code is equivalent
to one with generator matrix on the form

G =


G′ 0
s1 1100
s1 1010
s1 1001

 , (2)

where G′ is a generator matrix of a [32, 5, 16] code. This search takes 70-80
seconds, yielding two inequivalent codes as shown in Table 3.

4 Partial results on the [72, 36, 16] code

Inspired by our success with the relatively small [36, 8] code, we give some pre-
liminary results for the [72, 36, 16] code. In this section, we let C denote an
arbitrary [72, 36, 16] Type II code. We know from [3] that d1 = 16 and d2 = 24.



4.1 Further preliminaries

We need the well-known Johnson bounds for some of the proofs. Let A(n, d, w)
denote the maximum size of a (non-linear) code with constant weight w and
minimum distance d.

Lemma 4 (Johnson bounds). We have

A(n, 2w,w) = b n
w
c,

A(n, d, w) ≤ b n
w
A(n− 1, d, w − 1)c,

A(n, d, w) ≤ b n

n− w
A(n− 1, d, w)c.

Forney [5] discussed a series of duality results for higher weights, some of
which could be traced back to Wei [13]. We summarise a few key points which
we will use. Let I = {1, . . . , n} be the co-ordinate index set. For any J ⊂ I, let
CJ denote code C shortened on I\J , i.e.

CJ = {c ∈ C : ∀i 6∈ J, ci = 0}.

It is known that if dimCJ = r, then dim(C⊥)I\J = r+ n− k−#J . Clearly, for
each r, there is J ⊂ I such that w(CJ) = dr. Then, w((C⊥)I\J) = d⊥r+n−k−dr

.
Let PJ(C) be the code punctured on I\J , i.e. the code

PJ(C) = {(c1, . . . , cn) : ∃(c′1, . . . , c′n) ∈ C, ∀i ∈ I\J, ci = c′i;∀i ∈ J, ci = 0}.

Clearly dimPJ(C) + dimCJ = dimC.
We define the past subcode Pi = C1,...,i and the future subcode Fi =

Ci+1,...,n.

4.2 The third, fourth, and fifth weight

Lemma 5. Any [72, 36, 16] code has d3 = 28 or d3 = 29.

Proof. We get d3 ≥ 28 from the Griesmer bound. Consider a shortened code CJ

of weight w(CJ) = 24 and dimension 2. Then PI\J(C) would be a [48, 34] code,
which has minimum distance 6 or less by Brouwer’s tables [1]. Hence d3 ≤ 30.

Suppose for a contradiction that d3 = 30.
Assume a coordinate ordering such that P16 has dimension one and P24

dimension two. Now F16 is a doubly-even [56, 21, 16] code containing the all-one
word, and thus F⊥16 is a [56, 35, 8] even code. Solving the MacWilliams identities,
we find that F⊥16 has 1155 words of weight 8.

Since C has d3 = 30, F⊥16 has d2 ≥ 14, and thus two words of weight 8 must
have distance at least 12. This results in a (56, 1155, 12) constant weight code
with w = 8. However, this is impossible because

A(56, 12, 8) ≤ b56
8
A(55, 12, 7)c ≤ b56

8
b55

7
A(54, 12, 6)cc

≤ b56
8
b55

7
b54

6
ccc = 490,

by Lemma 4.



Lemma 6. If C has d3 = 28, then 30 ≤ d4 ≤ 32.

Proof. We have d4 ≥ 30 by the Griesmer bound, and d4 ≤ 33 because d(44, 33) ≤
5. Suppose d4 = 33 for a contradiction. Assume a coordinate ordering such that
P28 has dimension 3. Now F⊥28 is a [44, 33, 5] code containing the all-one word,
and F28 is doubly-even without the all-one word. The MacWilliams identities
for this code pair has no integer solutions, so the codes cannot exist.

Lemma 7. If C has d3 = 29, then 32 ≤ d4 ≤ 33.

Proof. The lower bound follows from Griesmer and the upper bound follows
from the fact that d(43, 33) = 4.

Lemma 8. We have d5 < 37.

Proof. We know that d4 ≤ 33, so d5 ≤ 37 follows from Brouwer’s tables. Suppose
for a contradiction that d5 = 37. Then d6 ≥ 39 by Griesmer, and d6 ≤ 39 by
Brouwer’s tables. Thus we get top-down greedy weights ẽ4 = 35 and ẽ3 = 33.
We know that ẽ2 is even, so it must be 30 or 32, but then there is no possible
choice for ẽ1 and we therefore conclude that d5 < 37.

5 Conclusion

We have presented a novel approach to constraining code searches. This approach
proved very effective in the case of [36, 8, 16] where an exhaustive search can be
done in less than two CPU-minutes, and show exactly two distinct codes up to
equivalence.

Hopefully, this can inspire renewed interest in some of the legendary problems
of coding theory, and combining the present techniques with others, one might
just see some solutions in the foreseeable future.
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