Hans Georg Schaathun
Oktober 2016
$$V = \pi r^2 h$$
$$r(x) = \frac{25}{35}\cdot x, \quad 0\le x \le 35$$
$$A_{\textrm{slice}} = \pi [r(x)]^2$$
$$V_{\textrm{slice}} \approx \pi [r(x)]^2\cdot\Delta x$$
$$V_{\textrm{cone}} \approx \sum_i \pi [r(x_i)]^2\cdot\Delta x$$
$$V_{\textrm{cone}} = \int_{x_{\textrm{topp}}}^{x_{\textrm{botn}}} \pi [r(x)]^2 dx$$