Hans Georg Schaathun
Juni 2016
$$f(x) = x^3 - x^2 - x + 1$$
$$ \begin{align} f(x) &= \begin{cases} 1, \quad\text{der } x>0,\\ 0, \quad\text{der } x=0,\\ -1, \quad\text{der } x<0. \end{cases} \end{align} $$
$$f_1(x) = x + 1$$
$$f_2(x) = x^2 - 1$$
$$f_3(x) = x^5 + x^2 - 5x - 1$$
$$f_4(x) = \sqrt x$$
$$f_5(x) = 2^x$$
$$f_6(x) = \sin x$$
$$ \begin{align} g(x) = \begin{cases} x+1, \quad x \neq 1, \\ 1, \quad x = 1. \end{cases} \end{align} $$
$$f(x) = \frac{1}{x}$$