Reduksjonsformel

Delvis integrasjon om og om igjen

Hans Georg Schaathun

Oktober 2016

Oppgåve

$$ I_n = \int x^ne^{-x} dx$$

  1. Finn \(I_4\)
  2. Korleis kan du finna \(I_8\) raskt og effektivt?

$$ I_n = \int x^ne^{-x} dx$$

$$U = x^n \quad dU = nx^{n-1}dx$$

$$dV = e^{-x}dx \quad V = -e^{-x}$$

$$I_n = UV - \int VdU = UV + \int e^{-x} n\cdot x^{n-1}dx$$

$$I_n = -x^ne^{-x} + nI_{n-1}$$

$$I_n = -x^ne^{-x} + nI_{n-1}$$

$$ I_0 = \int x^0e^{-x} dx$$

$$ I_0 = \int e^{-x} dx = -e^{-x} + C$$

$$I_n = -x^ne^{-x} + nI_{n-1}$$

$$ I_0 = \int e^{-x} dx = -e^{-x} + C_0$$

$$I_1 = -xe^{-x} - e^{-x} + C_1 = -e^{-x}(x+1) + C_1 $$

$$I_2 = -x^2e^{-x} + 2I_1 = -e^{-x}(x^2+2(x+1)) + C_2 $$

$$I_3 = -x^3e^{-x} + 3I_2 = -e^{-x}(x^3+3(x^2+2(x+1))) + C_3 $$

$$I_4 = -x^4e^{-x} + 4I_3$$

$$ \begin{align} \begin{split} I_4 &= -e^{-x}(x^4+4(x^3+3(x^2+2(x+1)))) + C_4 \\&= -e^{-x}(x^4+4x^3+12x^2+24x+24) + C_4 \end{split} \end{align} $$