Andreordens differentiallikningar

Generell løysing

Hans Georg Schaathun

September 2016

$$ay'' + by' + cy = 0$$

Andre orden: \(y''\)

Homogen: \(y'', y', y\) -- ingen konstantledd

Konstante koeffisientar: \(a, b, c\)

$$ay'' + by' + cy = 0$$

$$y = e^{rt}$$

$$ar^2e^{rt} + bre^{rt} + ce^{rt} = 0$$

$$ar^2 + br + c = 0$$

$$r = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$

Fyrste fall: to reelle røter

$$r = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \quad b^2>4ac$$

$$ r_1 = \frac{-b + \sqrt{b^2-4ac}}{2a} \quad\quad r_2 = \frac{-b - \sqrt{b^2-4ac}}{2a} $$

$$y = e^{r_1t} \quad\quad y = e^{r_2t}$$

$$y = Ae^{r_1t} + Be^{r_2t}$$

Andre fall: éin reell rot

$$r = \frac{-b}{2a} \quad\quad b^2=4ac$$

$$y = e^{rt}$$

$$y = te^{rt}$$

Andre fall: éin reell rot

$$r = \frac{-b}{2a} \quad\quad b^2=4ac$$

$$y = e^{rt} \quad\quad y = te^{rt}$$

$$y = A\cdot e^{rt} + B\cdot te^{rt}$$

Tredje fall: to komplekse røter

$$r = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \quad b^2<4ac$$

$$r = \frac{-b \pm i\sqrt{4ac-b^2}}{2a}$$

$$\Re(r) = k = \frac{-b}{2a} $$ $$\Im(r)=\omega=\frac{\sqrt{4ac-b^2}}{2a}$$

$$y_1^* = e^{(k-i\omega)t} \quad\quad y_2^* = e^{(k+i\omega)t}$$

$$y^* = Ae^{(kt-i\omega)t} + B e^{(kt +i\omega)t}$$

Tredje fall - reell funksjon

$$y^* = Ae^{(kt-i\omega)t} + B e^{(kt +i\omega)t}$$

$$y^* = e^{kt}\big[Ae^{-i\omega t} + B e^{i\omega t}\big]$$

$$e^{i\omega t} = \cos (\omega t) + i\sin(\omega t)$$

$$e^{-i\omega t} = \cos (\omega t) - i\sin(\omega t)$$

$$\frac12( e^{i\omega t} + e^{-i\omega t}) = \cos (\omega t)$$

$$\frac1{2i}( e^{i\omega t} - e^{-i\omega t}) = \sin (\omega t)$$

$$y_1 = e^{kt}\cos(\omega t) \quad\quad y_2 = e^{kt}\sin(\omega t) $$

$$y = A\cdot e^{kt}\cos(\omega t) + B\cdot e^{kt}\sin(\omega t) $$