Polare koordinatar

Ei alternativ tolking av komplekse tal

Hans Georg Schaathun

September 2016

$$z = a+bi$$

$$|z| = \sqrt{a^2+b^2}$$

$$|z| = \sqrt{z\bar z}$$

$$\bar z = a-bi$$

$$\arg z = \theta$$

$$\tan \theta = \frac{b}{a}$$

$$\textbf{Arg}\;z = \tan^{-1}\frac{b}{a}$$

$$z = a+bi$$

$$a=r\cdot \cos \theta$$

$$b=r\cdot \sin \theta$$

$$z=r(\cos\theta+i\sin\theta)$$

$$z\cdot w = \big[r\cdot(\cos\theta+i\sin\theta) \big] \cdot\big[s\cdot(\cos\phi+i\sin\phi)\big]$$

$$z\cdot w = (rs) \big[(\cos\theta)(\cos\phi) + i(\sin\theta)(\cos\phi) + i(\cos\theta)(\sin\phi)+i^2(\sin\theta)(\sin\phi)\big]$$

$$z\cdot w = (rs) \bigg( \big[(\cos\theta)(\cos\phi) - (\sin\theta)(\sin\phi)\big] + i\big[(\sin\theta)(\cos\phi) + (\cos\theta)(\sin\phi) \big] \bigg) $$

$$z\cdot w = (rs) \big[ \cos(\theta+\phi) + i(\sin(\theta+\phi)\big] $$

$$|zw| = |z|\cdot|w|$$

$$\arg (zw) = \arg z + \arg w$$