Den komplekse eksponentialfunksjonen

Hans Georg Schaathun

September 2016

$$e^{a+iy}$$

$$\frac{d}{dz} e^{z} = e^{z}$$

$$z=x+iy$$

$$f(z) = e^x\cos y + ie^x\sin y$$

$$u(x,y) = \Re(f(x)) = e^x\cos y$$

$$v(x,y) = \Im(f(x)) = e^x\sin y$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} $$

$$\frac{\partial u}{\partial y} = - \frac{\partial v}{\partial x} $$

$$f(z) = u(x,y) + i\cdot v(x,y), \quad \quad z=x+iy$$

$$u(x,y) = \Re(f(x)) = e^x\cos y$$

$$v(x,y) = \Im(f(x)) = e^x\sin y$$

$$f'(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = e^{x}\cos y + i\cdot e^x\sin y = f(z)$$