Hans Georg Schaathun
September 2016
$$x^3 - x - 1 = 0$$
$$y = x^3 - x - 1 $$
$$y' = 3x^2 - 1 $$
$$x_{n+1} = x_n - \frac{y_n}{y_n'}$$
$$x_{n+1} = x_n - \frac{x_n^3-x_n-1}{3x_n^2-1}$$
$$x_0 = 1{,}5$$ | $$y_0 = 0{,}875$$ |
$$x_1 = 1{,}347\,826\,086\,96$$ | $$y_1 = 0{,}100\,682\,173\,091$$ |
$$x_2 = 1{,}325\,200\,398\,95$$ | $$y_2 = 0{,}002\,058\,361\,917$$ |
$$x_3 = 1{,}324\,718\,174\,00$$ | $$y_3 = 0{,}000\,000\,924\,378$$ |
$$x_4 = 1{,}324\,717\,957\,24$$ | $$y_4 = 0{,}000\,000\,000\,000$$ |
$$x_5 = 1{,}324\,717\,957\,24$$ | $$y_5 = 0{,}000\,000\,000\,000$$ |