Logaritmefunksjonar

Inversen til eksponentialfunksjonen

Hans Georg Schaathun

August 2016

$$f(x) = 2^x$$

$$f^{-1}(y) = \log_2 y$$

\(a^0 = 1\)\(\log_a 1 = 0\)
\(a^{x+y} = a^xa^y\)\(\log_a (xy) = \log_a x + \log_a y\)
\(a^{-x} = \frac1{a^x}\)\(\log_a \frac1x = - \log_a x \)
\(a^{x-y} = \frac{a^x}{a^y}\)\(\log_a \frac xy = \log_a x - \log_a y \)
\((a^{x})^y = a^{xy}\)\(\log_a (x^y) = y\log_a x\)
\((ab)^x = a^{x}b^x\)\(\log_a x = \frac{\log_b x}{\log_b a}\)