Hans Georg Schaathun
August 2016
$$f(x) = 2^x$$
$$f^{-1}(y) = \log_2 y$$
\(a^0 = 1\) | \(\log_a 1 = 0\) |
\(a^{x+y} = a^xa^y\) | \(\log_a (xy) = \log_a x + \log_a y\) |
\(a^{-x} = \frac1{a^x}\) | \(\log_a \frac1x = - \log_a x \) |
\(a^{x-y} = \frac{a^x}{a^y}\) | \(\log_a \frac xy = \log_a x - \log_a y \) |
\((a^{x})^y = a^{xy}\) | \(\log_a (x^y) = y\log_a x\) |
\((ab)^x = a^{x}b^x\) | \(\log_a x = \frac{\log_b x}{\log_b a}\) |