
hials

Lists and Tuples
Composite Data Types in Haskell

Prof Hans Georg Schaathun

Høgskolen i Ålesund

February 2, 2015

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 1 / 22

hials

Tuples

Outline

1 Tuples

2 Algebraic Data Types

3 Lists

4 Closure

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 2 / 22

hials

Tuples

Scalar Data Types

1 Int, Integer
2 Double
3 Bool
4 Char, String

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 3 / 22

hials

Tuples

Composite Data

An adress consists of
1 Street name

(String)

2 House number

(Integer)

3 Post code

(Integer)

4 Post town

(String)

How do we represent an address?
Tuples

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 4 / 22

hials

Tuples

Composite Data

An adress consists of
1 Street name (String)
2 House number (Integer)
3 Post code (Integer)
4 Post town (String)

How do we represent an address?
Tuples

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 4 / 22

hials

Tuples

Custom Types

An address
home = ("Larsgårdsveien",2,6025,"Ålesund")
home :: (String,Integer,Integer,String)

Declare a new type alias
type Address = (String,Integer,Integer,String)

Type aliases is a convenience for readability

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 5 / 22

hials

Tuples

Important

Type name starts with a capital letter
Function names start lower-case
type defines an alias
Type checking does not distinguish between Address and
(String,Integer,Integer,String)

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 6 / 22

hials

Tuples

Tuples of Tuples

Tuples can be made of any types

type Person = (String,String,Bool)

type Address = (String,Integer,Integer,String)

type Customer = (Person,Address)

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 7 / 22

hials

Tuples

Programming with Tuples

A tuple is a single object
getAddress :: Customer -> Address
getAddress c = snd c
snd returns the second element of a pair

In fact, snd is defined as
snd :: (a,b) -> b
snd (_,y) = y
This is pattern matching with tuples

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 8 / 22

hials

Tuples

Pattern Matching

showCustomer :: Customer -> String

showCustomer (p,a) =
showPerson p ++ showAddress a

showPerson :: Person -> String

showPerson (x,y,_) = x ++ " " ++ y ++ "\n"

showAddress :: Address -> String

showAddress (x,y,) = x ++ " " ++ show y ++ "\n"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 9 / 22

hials

Tuples

Pattern Matching

showCustomer :: Customer -> String

showCustomer (p,a) =
showPerson p ++ showAddress a

showPerson :: Person -> String

showPerson (x,y,_) = x ++ " " ++ y ++ "\n"

showAddress :: Address -> String

showAddress (x,y,) = x ++ " " ++ show y ++ "\n"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 9 / 22

hials

Tuples

Pattern Matching

showCustomer :: Customer -> String

showCustomer (p,a) =
showPerson p ++ showAddress a

showPerson :: Person -> String

showPerson (x,y,_) = x ++ " " ++ y ++ "\n"

showAddress :: Address -> String

showAddress (x,y,) = x ++ " " ++ show y ++ "\n"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 9 / 22

hials

Tuples

Another example
Pattern Matching

addPair :: (Integer,Integer) -> Integer

addpair (x,y) = x + y

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 10 / 22

hials

Algebraic Data Types

Outline

1 Tuples

2 Algebraic Data Types

3 Lists

4 Closure

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 11 / 22

hials

Algebraic Data Types

Algebraic Data Types

We can declare new types type
type Person = (String,String,Bool)
composite types using tuples
type aliases, not new types

Genuinly new types is possible
Algebraic data types
data Person = Person String String Bool
Objects are created with the constructor Person
me = Person John Doe True

We will consider algebraic data types next week

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 12 / 22

hials

Lists

Outline

1 Tuples

2 Algebraic Data Types

3 Lists

4 Closure

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 13 / 22

hials

Lists

The limitation of tuples

Each tuple type has a fixed length
(Integer,Integer) is a different type from
(Integer,Integer,Integer)

What if you need a list of customers, with unbounded length?
then lists is the answer

[Customer] is a list type
arbitrary number of customers

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 14 / 22

hials

Lists

Lists versus tuples

item = ("Oranges", 5)

goods = ["Oranges","Bananas","Apples"]

Tuples Lists
Length Fixed length Variable length
Constituent
Types

Any combination One type for all
elements

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 15 / 22

hials

Lists

Lists definitions

Some lists of type [Integer]

1 [2,3,5,7,11]

2 [1..10]

3 [0,5..100]

4 [10,8..0]

5 []

(empty)

6 [1..]

(infinite)

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 16 / 22

hials

Lists

Lists definitions

Some lists of type [Integer]

1 [2,3,5,7,11]

2 [1..10]

3 [0,5..100]

4 [10,8..0]

5 [] (empty)
6 [1..] (infinite)

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 16 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3

→ 7

head l

→ 2

tail l

→ [3,5,7,11]

l ++ [13,17,19]

→ [2,3,5,7,11,13,17,19]

0:l

→ [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3 → 7
head l

→ 2

tail l

→ [3,5,7,11]

l ++ [13,17,19]

→ [2,3,5,7,11,13,17,19]

0:l

→ [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3 → 7
head l → 2
tail l

→ [3,5,7,11]

l ++ [13,17,19]

→ [2,3,5,7,11,13,17,19]

0:l

→ [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3 → 7
head l → 2
tail l → [3,5,7,11]
l ++ [13,17,19]

→ [2,3,5,7,11,13,17,19]

0:l

→ [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3 → 7
head l → 2
tail l → [3,5,7,11]
l ++ [13,17,19] → [2,3,5,7,11,13,17,19]
0:l

→ [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

Functions on lists

let l = [2,3,5,7,11]
l!!3 → 7
head l → 2
tail l → [3,5,7,11]
l ++ [13,17,19] → [2,3,5,7,11,13,17,19]
0:l → [0,2,3,5,7,11]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 17 / 22

hials

Lists

The String is a List

1 [’a’,’c’..’m’]
"acegikm"

2 "Hello" ++ ", " ++ "John"
List concatenation used on strings

3 head "Hello"

4 tail "Hello"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 18 / 22

hials

Lists

The String is a List

1 [’a’,’c’..’m’]
"acegikm"

2 "Hello" ++ ", " ++ "John"
List concatenation used on strings

3 head "Hello"

4 tail "Hello"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 18 / 22

hials

Lists

The String is a List

1 [’a’,’c’..’m’]
"acegikm"

2 "Hello" ++ ", " ++ "John"
List concatenation used on strings

3 head "Hello"

4 tail "Hello"

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 18 / 22

hials

Lists

List comprehension

let l = [1..10]

Set comprehension in mathematics
{2x |x = 1, . . . ,10}
{2x |x ∈ {1, . . . ,10}}

List comprehension in Haskell
[2*x | x <- [1..10]]
[2*x | x <- l]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 19 / 22

hials

Lists

List comprehension

let l = [1..10]

Set comprehension in mathematics
{2x |x = 1, . . . ,10}
{2x |x ∈ {1, . . . ,10}}

List comprehension in Haskell
[2*x | x <- [1..10]]
[2*x | x <- l]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 19 / 22

hials

Lists

List comprehension

let l = [1..10]

Set comprehension in mathematics
{2x |x = 1, . . . ,10}
{2x |x ∈ {1, . . . ,10}}

List comprehension in Haskell
[2*x | x <- [1..10]]
[2*x | x <- l]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 19 / 22

hials

Lists

List comprehension

let l = [1..10]

Set comprehension in mathematics
{2x |x = 1, . . . ,10}
{2x |x ∈ {1, . . . ,10}}

List comprehension in Haskell
[2*x | x <- [1..10]]
[2*x | x <- l]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 19 / 22

hials

Lists

List comprehension with conditions

let l = [1..20]

[x | x <- l, x ‘mod‘ 2 = 0]

[x | x <- l, x ‘mod‘ 2 = 0, x > 3]

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 20 / 22

hials

Closure

Outline

1 Tuples

2 Algebraic Data Types

3 Lists

4 Closure

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 21 / 22

hials

Closure

Summary

Three types of composite data types
1 Tuples
2 Lists
3 Algebraic data types

Function definitions with pattern matching
patterns give access to constituent elements

Prof Hans Georg Schaathun Lists and Tuples February 2, 2015 22 / 22

	Tuples
	Algebraic Data Types
	Lists
	Closure

