Revision Exercises Week 2 Counting

Hans Georg Schaathun

12th November 2015

Problem 0.1 Consider the relation \sim relating x to y if $x^{2}=y^{2}$.

1. Show that \sim is a reflexive relation.
2. Show that \sim is a symmetric relation.
3. Show that \sim is a transitive relation.
4. What do we mean when we say that \sim is an equivalence relation?
5. Describe the equivalence classes of \sim.

Exercise 0.1 Calculate the following

1. $\binom{7}{3}$
2. $\binom{9}{4}$
3. $\binom{14}{4}$
4. $\binom{14}{10}$.
5. $\binom{620}{1}$
6. $\binom{620}{619}$
7. $\binom{620}{618}$

Exercise 0.2 Give two proofs that

$$
\binom{n}{k}=\binom{n}{n-k}
$$

Exercise 0.3 (Freely from Stein et al 1.1 Exercise 9) Using the formula for $\binom{n}{2}$, it is easy to see that

$$
n\binom{n-1}{2}=\binom{n}{2}(n-2)
$$

Find an intuitive and conceptual argument that this equation holds, using the fact that $\binom{n}{2}$ represents the number of two-element subsets.

Hint! You may think in terms officers and committees in a club, as in Exercise ?? Question 3.

Exercise 0.4 (Stein et al 1.3 Exercise 8) Consider a Cartesian coordinate system with integer coordinates. How many different paths exist from the origin $(0,0)$ to the point (m, n) where each path is built from m horizontal and n vertical line segments, each of length 1?

Exercise 0.5 (Stein et al 1.3 Exercise 18) Apply calculus and the binomial theorem to $(1+x)^{n}$ to show that

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots=n 2^{n-1}
$$

