The existensial quantifier Predicate logic

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 2/Session 3/Video 1 Recorded: 20th August 2013

Prof Hans Georg Schaathun

The existensial quantifier

Autumn 2013 - Session 2/3 (1) 1 / 5

4 E 5

Recall yesterday's example

- S(x) := x enters with a wet raincoat
- 2 t := it is raining outside
- s := there is some $x \in C$, such that P(x)
 - *S*(*x*) is a statement about some element *x*
 - s is a statement about the universe C

4 A N

Quantifiers

Definition

A quantifier is an expression or operator which turns a statement an arbitrary element into a statement about a universe.

- there is some is an existential quantifier
- A suitable element exists in the universe
- \exists is the mathematical shorthand
 - $s = \exists x \in C$, such that P(x)

$$s = \exists x \in C, P(x)$$

Quantifiers

Definition

A quantifier is an expression or operator which turns a statement an arbitrary element into a statement about a universe.

- there is some is an existential quantifier
- A suitable element exists in the universe
- ∃ is the mathematical shorthand
 - $s = \exists x \in C$, such that P(x)

$$s = \exists x \in C, P(x)$$

Proof by example

$$s := \exists x \in C, P(x)$$

How do we prove s?

- We can identify some $x_0 \in C$ where $P(x_0)$ is true.
- Since $x_0 \in C \land P(x_0)$,
 - we can conclude $\exists x \in C, P(x)$

Principle (Proof by example)

To show that a statement with existential quantifier, it is sufficient to identify one value of the variable that gives a true statement.

→ ∃ →

A D M A A A M M

An equation can be thought of as a predicate. Consider the equation $x^2 + 1 = 0$.

Express the claim that the equation has a solution in symbolic form.

