Implication Propositional calculus

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 – Part 2/Session 2/Video 2 Recorded: 15th August 2013

Prof Hans Georg Schaathun

Autumn 2013 – Session 2/2 (2) 1 / 7

Propositional logic

- So far
 - making statements predicates
 - combining statements with $\land,\,\lor,\,\oplus,$ and \neg
- To be discussed
 - Arguments, deduction
 - $\bullet~\mbox{Conditionals} \to \mbox{if} \dots \mbox{then}$

Implication

Many expressions to mean the same thing ...

- If s then t
- s implies t
- t follows from s
- *t* if *s*
- s only if t

Many words to express implication.

- Symbolic form: $s \Rightarrow t \ (t \Leftarrow s)$
- or sometimes s
 ightarrow t ($t \leftarrow s$)

For example

- Everyday
 - If Alice is ill, then she will not come to class
- Programming
 - if L.empty() then print(L.next())

For example, mathematics

If p is a prime, then $a^{p-1} \mod p = 1$ for each integer a = 1,..., p - 1 Fermat's little theorem

p is prime $\Rightarrow a^{p-1} \mod p = 1$ for each integer $a = 1, \dots, p-1$

The ambiguity and variety of English terms is resolved by symbolic notation.

Prof Hans Georg Schaathun

Autumn 2013 - Session 2/2 (2)

5/7

$s \Longrightarrow t$

hypothesiss is a called a hypothesis.
We say nothing about its truth value.conclusiont is a called the conclusion.
We can conclude the truth values under certain
conditions (s).

A (10) A (10) A (10)

Show that the expression $s \Rightarrow t$ is equivalent to $\neg s \lor (s \land t)$.

Prof Hans Georg Schaathun

Implication