The Binomial Theorem

Other uses of the binomial coefficient

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 - Session 1/6 (3)

A common formula

- What is ...
- $(x+y)^{2}=$
- $(x+y)^{3}=$
- $(x+y)^{4}=$
:
- $(x+y)^{n}=$
- The term $(x+y)$ is called a binomial

The binomial theorem

$$
\begin{aligned}
(x+y)^{n} & =\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1} y+\binom{n}{2} x^{n-2} y^{2} \\
& +\ldots+\binom{n}{n-1} x y^{n-1}+\binom{n}{n} x y^{n} .
\end{aligned}
$$

Theorem (The Binomial Theorem)

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

... but why is it true?

Evolving a pattern

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =(x+y) x+(x+y) y \\
& =x x+x y+x y+y y
\end{aligned}
$$

Evolving a pattern

$$
\begin{aligned}
(x+y)^{2} & =(x+y)(x+y) \\
& =(x+y) x+(x+y) y \\
& =x x+x y+x y+y y \\
(x+y)^{3} & =(x+y)^{2}(x+y)=(x x+x y+y x+y y)(x+y) \\
& =(x x+x y+y x+y y) x+(x x+x y+y x+y y) y \\
& =x x x+x y x+y x x+y y x+x x y+x y y+y x y+y y y
\end{aligned}
$$

Generalising

$$
(x+y)^{3}=x x x+x y x+y x x+y y x+x x y+x y y+y x y+y y y
$$

- $(x+y)^{n}$ gives 2^{n} terms
- (Ordered) lists of n elements from $\{x, y\}$
- Each of the 2^{n} possible lists occurs exactly once
- Each term of the sum will take one term from each factor

Generalising

$$
(x+y)^{3}=x x x+x y x+y x x+y y x+x x y+x y y+y x y+y y y
$$

- $(x+y)^{n}$ gives 2^{n} terms
- (Ordered) lists of n elements from $\{x, y\}$
- Each of the 2^{n} possible lists occurs exactly once
- n factors: $(x+y)(x+y) \ldots(x+y)$
- Each term of the sum will take one term from each factor

Simplifying

$$
(x+y)^{3}=x x x+x y x+y x x+y y x+x x y+x y y+y x y+y y y
$$

- The order of the factors is irrelevant
- e.g. $x x y=x y x=y x x$
- Two terms are equivalent (even equal) if the number of x s and $y s$ are the same
- Consider $x^{k} y^{n-k}$
- How many times does $x^{k} y^{n-k}$ occur in the sum?
- How many ways can you choose k places for x s in an n-element list?
- As always; $\binom{n}{k}$

Simplifying

$$
(x+y)^{3}=x x x+x y x+y x x+y y x+x x y+x y y+y x y+y y y
$$

- The order of the factors is irrelevant
- e.g. $x x y=x y x=y x x$
- Two terms are equivalent (even equal) if the number of x s and $y s$ are the same
- Consider $x^{k} y^{n-k}$
- How many times does $x^{k} y^{n-k}$ occur in the sum?
- How many ways can you choose k places for x s in an n-element list?
- As always; $\binom{n}{k}$

$$
(x+y)^{3}=x^{3}+\binom{3}{1} x^{2} y+\binom{3}{1} x y^{2}+y^{2}
$$

Summary

Theorem (The Binomial Theorem)

$$
(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{n-i} y^{i}
$$

- Each term is a obtained by selecting
- either x or y
- from each of the n factors $(x+y)$
- This gives initially ordered lists of variables
- The order is insignificant
- ($\left.\begin{array}{l}n \\ k\end{array}\right)$ terms are equal equal

Exercise

Explain why

$$
\sum_{i=0}^{n}(-1)^{i}\binom{n}{i}=0
$$

