The symmetry principle

Prof Hans Georg Schaathun

Høgskolen i Ålesund
Autumn 2013 - Session 1/6 (2)

Recollection

Remember the binomial coefficient

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

We defined this as the number of k-element subsets of an n-element set.

- Last talk, we asked about the relationship between

$$
\binom{n}{k} \quad \text { and } \quad\binom{n}{n-k}
$$

Symmetry of the Binomial Coefficient

- Having solved the previous exercise, we know that $\binom{12}{3}=\binom{12}{9}=220$
- In general, we may suspect $\binom{n}{k}=\binom{n}{n-k}$
- How do we prove it?
- Two approaches
- Abstract, symbolic manipulation
- Intuition

Symmetry of the Binomial Coefficient

- Having solved the previous exercise, we know that $\binom{12}{3}=\binom{12}{9}=220$
- In general, we may suspect $\binom{n}{k}=\binom{n}{n-k}$
- How do we prove it?
- Two approaches
- Abstract, symbolic manipulation
- Intuition

The abstract, symbolic approach

... without knowing what n and k means ...

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- Inserting for $k=n-k$, we get

$$
\binom{n}{n-k}=\frac{n!}{(n-k)!k!}
$$

- Since the order of the factors is irrelevant, we conclude that

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}=\binom{n}{n-k}
$$

- Symmetry in k and $n-k$

The symmetry principle

If a mathematical formula has a symmetry, e.g. two variable may be swapped, then a proof explaining the symmetry will usually add insight.

The intutive way

- Choosing a k-set $S \subset T$ for some n-set T,
- We choose in fact two sets
(1) The k-set S of elements we want
(2) The $(n-k)$-set $T \backslash S$ of elements we throw away
- One-to-one mapping between k - and $(n-k)$-sets $T \subset S$
- Hence $\binom{n}{k}=\binom{n}{n-k}$

Conclusion

Intuition confirms the theory.

- The symmetry is fairly easy to justify.

In many cases, symmetry can be used to simplify formulæ and arguments.

