The less than relation

Partial and total orders

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 - Session 1/5 (1)

Prof Hans Georg Schaathun

The less than relation

□ ▶ < @ ▶ < E ▶ < E ▶ E < Autumn 2013 – Session 1/5 (1)

• The most well-known and most used relations

Many relations have similar properties

Prof Hans Georg Schaathun

The less than relation

- defines a sort order
- If < is a relation on a set *S* we can define sorted lists from *S*.

Definition

A list $[x_1, \ldots, x_n]$ is sorted if and only if $x_i < x_j$ implies that i < j.

- Obviously > has exactly the same properties.
- and $\geq \leq$ have similar properties.

We will look at other relations which provide an ordering.

Are there other *smaller than* relations?

- neighbour of
- set equivalence
- subset of

Are any of these smaller than relations?

Symmetry and antisymmetry

View the sorted list

- $[x_1, x_2, x_3, \dots, x_n]$
- neighbour of is symmetric
 - i.e. if $x_i \sim x_j$ then $x_j \sim x_i$
 - x_i should be both before and after x_j
- set equivalence is alse symmetric
 - same problem
- subset of is not symmetric
 - it is in fact anti-symmetric
 - if $x_i \subset x_j$ then $x_j \not\subset x_i$ (except if $x_i = x_j$)

5/11

< 🗇 🕨 < 🖻 > <

Definition

A relation *R* is anti-symmetric if *xRy* and *yRx* implies that x = y.

Prof Hans Georg Schaathun

The less than relation

Transitivity

- View again the sorted list
 - $[x_1, x_2, x_3, \dots, x_n]$
- Suppose $x_i < x_j$ and $x_j < x_k$ (i < j < k)
 - what would you say about x_i in relation to x_k?
- We cannot have $x_k < x_i$, lest the list be unsorted
- We would expect that $x_i < x_k$, i.e. transitivity

The subset relation \sub is transitive.

A (10) > A (10) > A (10)

Transitivity

- View again the sorted list
 - $[x_1, x_2, x_3, \dots, x_n]$
- Suppose $x_i < x_j$ and $x_j < x_k$ (i < j < k)
 - what would you say about x_i in relation to x_k?
- We cannot have $x_k < x_i$, lest the list be unsorted
- We would expect that $x_i < x_k$, i.e. transitivity

The subset relation \subset is transitive.

A (1) > A (2) > A (1)

To be or not to be ... equal

- Smaller than relations come in two variants
 - Non-reflexive: <
 - Reflexive: \leq
- Question is, do you include (*x*, *x*) in the relation?
- Same for the subset relation
 - $\subseteq \subseteq$ versus \subset
 - $\bullet \ \ \text{or} \subset \text{versus} \subseteq$
- Each is well-defined in terms of the other

8/11

Definition (Partial order)

A partial order is a relation \prec which is reflexive, transitive, and anti-symmetric.

- Note that elements may be incomparable
 - Neither $x \prec y$ nor $y \prec x$
- A partial order defines a sort order
 - but the sorted list may not be unique

Definition

A partially ordered set (or poset) S is a set with some partial order \prec .

Definition

A total order is a partial order \prec where either $x \prec y$ or $y \prec x$ for any pair (x, y).

- That is, every pair of elements is comparable
- A total order defines a unique sort order for any set

Definition

A totally ordered set S is a set with some total order \prec .

The less than relation

4 E 6 4

10/11

Autumn 2013 - Session 1/5 (1)

Exercise

- Consider the set of people, and the relation *is an ancestor of*, where a person is considered to be one of his own ancestors.
 - Is this relation a partial order?
 - Is it a total order?
- What about the relation is a parent of?
- Give reasons for your answers.

11/11