The Bijection Principle Using sets of equal size

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 9, 2014

Bijections

Definition (Bijection)
A function f which is both surjective and injective is called a bijection.

- Bijections are important
- one-to-one relationship between sets
- One set serves as a representation of the other

Definition (Bijection Principle)
If there is a bijection $f: S \rightarrow T$ then S and T have the same number of elements; i.e. $|S|=|T|$.

Another sample of code

This algorithm counts triangles in an array A of n points.
1 trianglecount := 0
2 for $\mathrm{i}:=1$ to n
3 for $j:=i+1$ to n
4
5
6

$$
\text { for } k:=j+1 \text { to } n
$$

if A_{i}, A_{j}, A_{k} are not collinear increment trianglecount

How many times is the collinearity check (Line 5) run?

First bijection

1
2
3
for $\mathrm{i}:=1$ to n
for $\mathrm{j}:=\mathrm{i}+1$ to n
for $k:=j+1$ to n

- Loop for every triple (i, j, k) where $0<i<j<k \leq n$.
- Bijection $f: P \rightarrow S$, where
- P is the set of iterations
- S is the set of increasingly ordered triples (i, j, k) from \mathbb{N}_{n}.

Second bijection

- Let T be the set of three-element subsets of \mathbb{N}_{n}
- A triple $(i, j, k) \in S$ where $i<j<k$ corresponds to
- a set $\{i, j, k\} \in T$
- why?
- Since i, j, k are distinct, there is an obvious map $g:(i, j, k) \mapsto\{i, j, k\}$
suriective for any $\{i, j, k\} \in T$ we can put i, j, k in increasing order to form a triple x, and $g(x)=\{i, j, k\}$.
injective only one ordering of i, j, k gives an element of S, making a unique x such that $g(x)=\{i, j, k\}$.

Second bijection

- Let T be the set of three-element subsets of \mathbb{N}_{n}
- A triple $(i, j, k) \in S$ where $i<j<k$ corresponds to
- a set $\{i, j, k\} \in T$
- why?
- Since i, j, k are distinct, there is an obvious map

$$
g:(i, j, k) \mapsto\{i, j, k\}
$$

surjective for any $\{i, j, k\} \in T$ we can put i, j, k in increasing order to form a triple x, and $g(x)=\{i, j, k\}$.
injective only one ordering of i, j, k gives an element of S, making a unique x such that $g(x)=\{i, j, k\}$.

$$
|P|=|S|=|T|=\binom{n}{3}
$$

Exercise

Consider selection sort as studied in previous videos, where we wanted to count the number of executions of line 3 (the comparison).

Now we want to use the bijection principle to map this counting problem into a more generic counting problem.

1 for $i=1,2, \ldots, n-1$

$$
\text { for } j=i+1, i+2, \ldots, n
$$

if $A_{i}>A_{j}$ swap A_{i} with A_{j}

Hint! You can use the method for counting subsets. How do the loop indices (i, j) relate to subsets?

