Functions as Relations
 Surjective and Injective Functions

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 9, 2014

Recollection

Relation between X and $Y R \subset X \times Y$
Function from X and $Y f: X \rightarrow Y$

The Function as a Relation

- $f: X \rightarrow Y$
- Defines a relation $R_{f}=\{(x, f(x)): x \in X\}$
- Two special features
- every $x \in X$ occurs in a pair $(x, y) \in R_{f}$
- $x \in X$ cannot occur more than once in a pair $(x, y) \in R_{f}$
- A relation (in general) does not need either of these features

Injective and Surjective Functions

- $R_{f}=\{(x, f(x)): x \in X\}$
- Given x, there is a unique y, such that $(x, y) \in R_{f}$
- Given y, how many x exist such that $(x, y) \in R_{f}$?

General case could be 0,1 or many
Surjective function

- every y is used
- for any $y \in Y$, there is at least one x, such that $(x, y) \in R_{f}$
Injective function
- no y is used more than once
- for any $y \in Y$, there is at most one pair $(x, y) \in R_{f}$

Bijections

Definition

A Bijection is a function which is both injective and surjective

- A bijection is also called a one-to-one function
(1) Given y, there is a unique x such that $(x, y) \in R_{f}$
(2) Given x, there is a unique y such that $(x, y) \in R_{f}$
- There is an inverse function $f^{-1}: Y \rightarrow X$
(1) $f^{-1}(f(x))=x$
(2) $f\left(f^{-1}(y)\right)=y$
- There corresponding relation is
- $R_{f-1}=\left\{(y, x):(x, y) \in R_{f}\right\}$

Exercise

- Consider weekend activities
- Set of activities $A=\{$ Horseriding, Badminton, BBQ $\}$
- Set of days $D=\{$ Saturday, Sunday $\}$
(1) List all possible functions $A \rightarrow D$
(2) List all possible functions $D \rightarrow A$
(3) Which of the functions are injective?
(4) Which of the functions are surjective?

