Unordered selection Sets versus lists and permutations

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 8, 2014



Prof Hans Georg Schaathun

Unordered selection

July 8, 2014 1 / 7

# Different patterns of selection

|           | Without replacement                               | With replacement                               |
|-----------|---------------------------------------------------|------------------------------------------------|
| Ordered   | <i>k</i> -element permutation $\frac{n!}{(n-k)!}$ | <i>k-</i> element list<br><i>n<sup>k</sup></i> |
| Unordered | subset $\binom{n}{k}$                             | multiset<br>(see Stein <i>et al</i> )          |

Prof Hans Georg Schaathun

July 8, 2014 2 / 7

HØG

# Selection without replacement

k-element permutation order matters Set order does not matter

- Many different k-element permuations
  - correspond to one k-element subset

How many k-element subsets exist in an n-set?

- We know how to count k-element permutations
  - $\frac{n!}{(n-k)!}$
- but this counts each subset many times
  - once for every possible ordering of the elements

In how many ways can we order the elements of a k-set?

Count k-element permutations in two steps.

- Choose a *k*-element permutation from an *n*-set *T* 
  - 1) choose a k-element subset  $D \subset T$
  - 2 choose a permuation of D

### **Definition (Quotient Principle)**

If we can partition a set of size p into q blocks of size r, then q = p/r.



# The binomial coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Read: *n* choose *k*
- It is the number of ways to choose k out of n



#### Exercise

A 20-person club are going to elect a board. In how many ways can the elect ...

- four members for the board?
- a chair (1), a vice chair (2), a treasurer (3), and a secretary (4) to make up the board?

