Unordered selection

 Sets versus lists and permutations

 Sets versus lists and permutations}

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 8, 2014

Different patterns of selection

	Without replacement	With replacement
Ordered	k-element permutation $\frac{n!}{(n-k)!}$	k-element list n^{k}
Unordered	subset $\binom{n}{k}$	multiset (see Stein et al)

Selection without replacement

k-element permutation order matters
Set order does not matter
(1) Many different k-element permuations

- correspond to one k-element subset

Counting

How many k-element subsets exist in an n-set?

- We know how to count k-element permutations
- $\frac{n!}{(n-k)!}$
- but this counts each subset many times
- once for every possible ordering of the elements

In how many ways can we order the elements of a k-set?

Quotient Principle

Count k-element permutations in two steps.

- Choose a k-element permutation from an n-set T
(1) choose a k-element subset $D \subset T$
(2) choose a permuation of D

Definition (Quotient Principle)
If we can partition a set of size p into q blocks of size r, then $q=p / r$.

The binomial coefficient

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

- Read: nchoose k
- It is the number of ways to choose k out of n

Exercise

Exercise

A 20-person club are going to elect a board. In how many ways can the elect ...
(1) four members for the board?
(2) a chair (1), a vice chair (2), a treasurer (3), and a secretary (4) to make up the board?

