Shuffling a set

The full permutation

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 8, 2014

The k-element permutation

- We have seen the k-element permutation
- on some n-set S
- choose k distinct elements from S
- without replacement
- record them in order
- What do we mean by a permutation on S ?

Permutations of a set

- A permutation on S
- you permute (order) the entire set
- it is an n-permutation on an n-set

When you shuffle a deck of cards, you make a random permutation.

Counting permutations

How many distinct permutations exist on an n-set?

- The number of k-permutations is $\frac{n!}{(n-k)!}$
- Insert $n=k$ to get $\frac{n!}{(n-n)!}$
- Denominator 0!.
- Convention: 0! $=1$ (empty product)
- Thus we get n ! distinct permutations.

