Using Sum and Product Principles

Counting valid passwords

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 - Part 1/Session 3/Video 1
Recorded: August 21, 2013

Passwords

A password (for some computer system) is between four and eight characters long (inclusive), and composed of lowercase and/or uppercase letters (26-letter alphabet).
© How many passwords are possible?
(2) What counting principle(s) do you use?
(3) What percentage of valid passwords have exactly four letters?
paraphrased from Stein et al. Section 1.2

Step 1: Partitioning

Q 1 How many passwords are possible?

- Let ${ }^{(P)}$ be the set of all valid passwords.

How do we partition P ?

- Let P_{i} be the set of i-letter passwords.

- Treating one subset P_{i} at a time, we get rid of one variable - fixed number of letters to choose

Step 1: Partitioning

Q 1 How many passwords are possible?

- Let P be the set of all valid passwords.

How do we partition P ?

- Let P_{i} be the set of i-letter passwords.

$$
P=P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \cup P_{8}
$$

- Treating one subset P_{i} at a time, we get rid of one variable
- fixed number of letters to choose

Step 2: Counting the first component

$$
\begin{aligned}
& \text { How many four-etter passwords are possible? } \\
& A .=\{a, b, \ldots z, A, B, \ldots\}\}|A|=52 \\
& \text { (} x_{1}, x_{2}, x_{3} x_{4} \text {) } \\
& \text { - } W_{x_{1}}=\left\{\left(x, x_{2} x_{3} x_{4}\right) \mid x_{2}, x_{3}, x_{4} \in A\right\} \times 5^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left|W_{\left(x_{1}\right)}\right|=52 \cdot 52 \cdot 52.52 \cdot 52\left|P_{4}\right|=52{ }^{Y}
\end{aligned}
$$

Step 2: Counting the first component

How many four-letter passwords are possible?

- Choose one letter at a time
- Let A be the case-sensitive alphabet

$$
|A|=52
$$

(1) Choose first letter $x_{1} \in A$; 52 choices.
(3) Given x_{1}, choose second letter from $x_{2} \in A_{x_{1}}=A$; 52 choices
(3) Given x_{2}, choose second letter from $x_{3} \in A_{x_{1} x_{2}}=A$; 52 choices
(9) Given x_{3}, choose second letter from $x_{4} \in A_{x_{1} x_{2} x_{3}}=A$; 52 choices

- Applying the product principle, we get

$$
\left|P_{4}\right|=52: 52: 52 \cdot 52=52^{4}
$$

Step 3: Generalising

How many i-letter passwords are possible?
(1) 52 choices for one letter
(2) Having chosen $i-1$ letters, we have 52 choices for the i th one
(3) Thus, by the product principle,

$$
\begin{aligned}
& \left|P_{5}\right|=\left|P_{4}\right| \cdot 52=52^{5} \\
& \left|P_{6}\right|=\left|P_{5}\right| \cdot 52=52^{6} . \\
& \left|P_{7}\right|=\left|P_{6}\right| \cdot 52=52^{7} \\
& \left|P_{8}\right|=\left|P_{7}\right| \cdot 52=52^{8}
\end{aligned}
$$

(9) In general $\left|P_{i}\right|=\left|P_{i-1}\right| \cdot 52=52^{i}$
(6) or $\left|P_{i}\right|=52^{i}$

We have used a trick known as recursion, which we will discuss formally at a later stage.

Step 4: Putting it all together

The sum principle

How many passwords are possible with four to eight letters?

- We have a partitioning

- The sum principle applies

Step 4: Putting it all together

The sum principle

How many passwords are possible with four to eight letters?

- We have a partitioning

$$
P=P_{4} \cup P_{5} \cup P_{6} \cup P_{7} \cup P_{8}
$$

- The sum principle applies

$$
\begin{aligned}
|P| & =\left|P_{4}\right| \nmid\left|P_{5}\right| \nmid\left|P_{6}\right| \nmid\left|P_{7}\right| f\left|P_{8}\right| \\
& =52^{4}+52^{5}+52^{6}+52^{8}+52^{8} \\
& =54507958359296
\end{aligned}
$$

Counting principles

Q 2 What counting principle(s) do you use?
Answer We need both the sum and the product principle.

Percentage of short passwords

Q 3 What is percentage of valid passwords have exactly four letters?

Percentage of short passwords

Q 3 What is percentage of valid passwords have exactly four letters?

Exercise

For security reasons, we often want to make the password space (set of valid passwords) as large as possible.

Still considering passwords of four to eight characters, how much larger does the password space become if we allow digits as well as the 52 upper and lower case letters?

Give the answer as a factor. E.g. the new password space is x times larger than the old one.

