Functions

Lists generalised

Prof Hans Georg Schaathun

Høgskolen i Ålesund

July 7, 2014

Functions

$$
f: S \rightarrow T
$$

- Relates an element $f(x) \in T$ for every $x \in S$
- S is called the domain
- T is sometimes called the codomain
- The range R_{f} of f is
- set of values ever assumed by $f(x)$
- $R_{f}=\{f(x): x \in S\}$
- $R_{f} \subset T$ (subset of T)

A Programmer's View

Functions

Methods and functions in programming are in principle functions.

- Input arguments in $S\left(=S_{1} \times \ldots \times S_{n}\right)$
- Return value in T
- Data types are sets

The list as a function

A list of k elements from an n-set T.

$$
L=\left[x_{1}, x_{2}, \ldots, x_{k}\right]
$$

- Indexing gives us a map $i \mapsto x_{i}$
- i.e. function $L: \mathbb{N}_{n} \rightarrow T$
- $\mathbb{N}_{n}=\{1,2, \ldots, k\}$ is the natural numbers up to k inclusive

Lists share key properties with the set of natural numbers.

Counting possible functions

How many different functions $f: X \rightarrow Y$ exist from the k-set X to the n-set Y ?

1.	x_{1}	
2.	x_{2}	
3.	x_{3}	
4.	x_{4}	
\vdots		
k	x_{k}	

- Write the elements of X as a list
- arbitrary order
- Count as we did for a list
(1) You have k slots to fill.
(2) Each slot gives you n options.
(3) Use the Product Principle

Exercise

You are going to hand out k distinctly coloured balloons at a birthday party of n children. In how many ways can the k balloons be distributed to the n children, with no limit on the number of balloons a single child may receive?

