Summing Consecutive Integers

Counting

Prof Hans Georg Schaathun

Høgskolen i Ålesund

Autumn 2013 - Part 1/Session 2/Video 3A Recorded: August 21, 2013

Selection sort

Input Array A of length n
Output The same array A sorted in place.
1 for out_idx := 1 to $n-1$

for in_idx := out_idx+1 to n
if $A\left[\right.$ out_idx] > $A\left[i n _i d x\right]$ swap $A\left[\right.$ out_idx] with $A\left[i n _i d x\right]$

- We have agreed that Line 3 is run

times
Can we find a neat closed-form expression for the sum?

Gauss' problem
Karl Friedrich Gauss (1777-1855)

$$
101 \cdot 50=5050
$$

Gauss' problem
Karl Friedrich Gauss (1777-1855)

$$
\begin{aligned}
\sum_{j=1}^{n} j & =\sum_{j=1}^{n / 2} \underbrace{(j+(n-j))}_{n+1} m=100 \\
& =\sum_{j=1}^{n / 2} m+1
\end{aligned}
$$

Even n

$$
\sum_{j=1}^{m} j \quad\left\{\begin{array}{cc}
1 & m=n+1 \\
2 & m-1=m+1 \\
3 & m-2=n+1 \\
\vdots & \vdots \\
\frac{n}{2} \cdot(n+1) & \vdots \\
m / 2 & m / 2+1=m+1
\end{array}\right.
$$

$$
\sum_{j=1}^{n} j=\frac{n \cdot(n+1)}{2}
$$

